Abstract No: 186

ICT, Mathematics and Statistics

## FIRST ORDER KARUSH-KUHN-TUCKER CONDITIONS FOR QUADRATIC PROGRAMMING PROBLEMS WITH CONTINUOUS AND DISCRETE VARIABLES

## **<u>Y.C.D. Jayakaduwa</u>**<sup>\*</sup> and S. Srisatkunarajah

Department of Mathematics and Statistics, University of Jaffna, Jaffna, Sri Lanka \*cjayakaduwa@gmail.com

In classical optimization, method of Lagrange multiplier provides first order necessary conditions for optimization problems with equality constraints. Celebrated Karush-Kuhn-Tucker (KKT) conditions, published in 1951, generalize the Lagrange multiplier approach to Mathematical Programming problems with both equality and inequality constraints. In this research, a useful first order optimality conditions are provided for the following nonlinear quadratic programming model problem with continuous and discrete mixed bounded variables:

Model Problem (MP)

$$\min_{x \in \mathbb{R}^n} f_0(x) = \min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A_0 x + a_0^T x + c_0$$
  
subject to  $f_j(x) = \frac{1}{2} x^T A_j x + a_j^T x + c_j \le 0, \quad \forall j \in \{1, 2, \dots, m\}$   
 $x_i \in [u_i, v_i], \quad i \in I - \text{continuous variable},$   
 $x_i \in \{u_i, v_i\}, \quad i \in J - \text{discrete variable},$ 

where  $I \cap J = \emptyset, I \cup J = \{1, 2, \dots, n\}$ .  $A_j = (a_{st}^{(j)})$  is an order *n* symmetric matrix, for all  $j \in \{0, 1, \dots, m\}$ .  $a_j = (a_r^j) \in \mathbb{R}^n$ ,  $c_j \in \mathbb{R}$  and  $u_i, v_i \in \mathbb{R}$  with  $u_i < v_i$  for all  $i \in \{1, 2, \dots, n\}$ .

As MP admits discrete variables, available KKT type local necessary optimality conditions are not readily applicable to this problem. A new necessary optimality condition is derived as follows: If  $\bar{x} \in D$  is a local minimizer of (*MP*), then

 $X_i(\bar{x}) \sum_{j=0}^m \lambda_j (A_j \bar{x} + a_j)_i \leq 0$ ,  $\forall i \in I$ ; where  $\lambda_j \in \mathbb{R}^+$ ; j = 1, 2, ..., m are the Lagrangian multipliers associated with  $\bar{x} \in \tilde{D}$ ,  $\lambda_0 = 1$  and  $X_i(\bar{x}) = -1$  if  $\bar{x}_i = u_i$ , 1 if  $\bar{x}_i = v_i$ ,  $\nabla L(\bar{x}, \lambda)_i$  if  $\bar{x}_i \in (u_i, v_i)$ . The newly derived necessary condition is provided in terms of the data/coefficients of MP and easily verifiable without long computation. Further it can be useful to develop a numerical scheme to locate the local minimizers of MP.

Keywords: Karush-Kuhn-Tucker conditions, Mixed variables, Quadratic programming problem