FIRST ORDER KARUSH-KUHN-TUCKER CONDITIONS FOR QUADRATIC PROGRAMMING PROBLEMS WITH CONTINUOUS AND DISCRETE VARIABLES

Y.C.D. Jayakaduwa* and S. Srisatkunarajah
Department of Mathematics and Statistics, University of Jaffna, Jaffna, Sri Lanka "cjayakaduwa@gmail.com

In classical optimization, method of Lagrange multiplier provides first order necessary conditions for optimization problems with equality constraints. Celebrated Karush-KuhnTucker (KKT) conditions, published in 1951, generalize the Lagrange multiplier approach to Mathematical Programming problems with both equality and inequality constraints. In this research, a useful first order optimality conditions are provided for the following nonlinear quadratic programming model problem with continuous and discrete mixed bounded variables:
Model Problem (MP)

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f_{0}(x)=\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} A_{0} x+a_{0}^{T} x+c_{0} \\
& \text { subject to } f_{j}(x)=\frac{1}{2} x^{T} A_{j} x+a_{j}^{T} x+c_{j} \leq 0, \quad \forall j \in\{1,2, \ldots \ldots \ldots, m\} \\
& \qquad x_{i} \in\left[u_{i}, v_{i}\right], \quad i \in I-\text { continuous variable, } \\
& \qquad x_{i} \in\left\{u_{i}, v_{i}\right\}, \quad i \in J-\text { discrete variable, }
\end{aligned}
$$

where $I \cap J=\emptyset, I \cup J=\{1,2, \ldots \ldots, n\} . A_{j}=\left(a_{s t}^{(j)}\right)$ is an order n symmetric matrix, for all $j \in\{0,1, \ldots, m\} . a_{j}=\left(a_{r}^{j}\right) \in \mathbb{R}^{n}, c_{j} \in \mathbb{R}$ and $u_{i}, v_{i} \in \mathbb{R}$ with $u_{i}<v_{i}$ for all $i \in\{1,2, \ldots, n\}$.
As MP admits discrete variables, available KKT type local necessary optimality conditions are not readily applicable to this problem. A new necessary optimality condition is derived as follows: If $\bar{x} \in D$ is a local minimizer of ($M P$), then
$X_{i}(\bar{x}) \sum_{j=0}^{m} \lambda_{j}\left(A_{j} \bar{x}+a_{j}\right)_{i} \leq 0, \forall i \in I ;$ where $\lambda_{j} \in \mathbb{R}^{+} ; j=1,2, \ldots, m$ are the Lagrangian multipliers associated with $\bar{x} \in \widetilde{D}, \lambda_{0}=1$ and $X_{i}(\bar{x})=-1$ if $\bar{x}_{i}=u_{i}, 1$ if $\bar{x}_{i}=v_{i}, \nabla L(\bar{x}, \lambda)_{i}$ if $\bar{x}_{i} \epsilon\left(u_{i}, v_{i}\right)$. The newly derived necessary condition is provided in terms of the data/coefficients of MP and easily verifiable without long computation. Further it can be useful to develop a numerical scheme to locate the local minimizers of MP.

Keywords: Karush-Kuhn-Tucker conditions, Mixed variables, Quadratic programming problem

